LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION – MATHEMATICS FIFTH SEMESTER – NOVEMBER 2009 – 10 MT 5508 – LINEAR ALGEBRA

Max. Marks: 100 Duration: 3 hrs.

(5 X 8 = 40)

Section – A

Answer ALL the questions:

(10 x 2 = 20)

- 1. Define a vector space *V* over a field *F*.
- 2. Show that the vectors (1, 1) and (-3, 2) in R^2 are linearly independent over R, the field of real numbers.
- 3. Define homomorphism of a vector space into itself.
- 4. Define an inner product space.
- 5. Normalise (1 + 2i, 2 i, 1 i) in C^3 relative to the standard inner product.
- 6. Define eigen value and eigen vector.

7. Show that
$$A = \begin{pmatrix} 1/\sqrt{2} & i/\sqrt{2} \\ i/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$
 is unitary.

- 8. If A and B are Hermitian, show that AB + BA is Hermitian and AB BA is skew-hermitian.
- 9. State the Schwarz inequality.
- 10. Prove the parallelogram law in a inner product space V.

Section – B

Answer any FIVE questions:

- 11. Let *V* be a vector space of dimension *n*, and let v_1 , v_2 , v_3 , ..., v_r be linearly independent vectors in *V*. Prove that there exists n r new vectors v_{r+1} , ..., v_n in V such that $\{v_1, ..., v_n\}$ is a basis of *V*.
- 12. Show that the set $\{1, x, x^2, ..., x^n\}$ is a basis of the vector space F[x] of all polynomials of degree at most n.
- 13. Let V and W be two *n*-dimensional vector spaces over F. Then prove that any isomorphism T of V onto W maps a basis of V onto a basis of W.
- 14. If V is a finite-dimensional inner product space and if W is a subspace of V, then show that $V = W \oplus W^{\perp}$, the direct sum of W and its orthogonal complement.
- 15. Prove that $T \in A(V)$ is invertible if and only if T maps V onto V.

16. For $A, B \in F_n$ and $\lambda \in F$, prove that

(i) tr $(\lambda A) = \lambda$ tr A, (ii) tr (A + B) = tr A + tr B, (iii) tr (AB) = tr (BA).

- 17. Prove that the eigen values of a unitary transformation are all of absolute value 1.
- 18. Prove that for any $m \ge n$ matrix A over a field F, the row rank and column rank are equal.

Section – C

Answer any TWO questions:

(2 X 20 = 40)

- 19. (a)The vector space V over F is a direct sum of two of its subspaces W_1 and W_2 if and only if $V = W_1 + W_2$ and $W_1 \cap W_2 = (0)$. Prove the statement.
 - (b)Prove that if V is a vector space of finite dimension and W is a subspace of V, then $\dim V/W = \dim V - \dim W.$
- 20. (a)Let V be a vector space of dimension n over F. Then prove that the dual space V^* also has dimension n.

(b)Prove that every finite-dimensional inner product space has an orthonormal set as a basis.

21. (a)Let V be a vector space of dimension n over F, and let $T \in A(V)$. If $m_1(T)$ and $m_2(T)$ are the matrices of T relative to two bases $\{v_1, ..., v_n\}$ and $\{w_1, ..., w_n\}$ of V, respectively, then show that there is an invertible matrix C in F_n such that $m_2(T) = Cm_1(T)C^{-1}$.

(b)Let $V = R^3$ and suppose that $\begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$ is matrix of $T \in A(V)$ relative to the

standard basis $v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (0, 0, 1)$. Find the matrix of *T* relative to the basis $w_1 = (1, 1, 0), w_2 = (1, 2, 0), w_3 = (1, 2, 1)$.

22. If $T \in A(V)$ has all its eigen values in *F*, then prove that there is a basis of *V* in which the matrix of *T* is triangular.